Author: Burak Himmetoglu
Notes on the Neural Probabilistic Language Model

Below is a schematic representation of the neural language model. The network can be

summarized as follows:

input embedding hidden output
e
o
[[J @
ind. o . . . - .
w1l g ' @ g
[J
table ® ® vk
T 100kup | @ o softmaxy = v -
wi [> 0 — == 2= e
6 : : Plwpii|(wy,wa, ... wp))

[
b ba
ind. . . ___l -
(wy,...wp) ay a9 Y

FIG. 1. The Neural Language Model

1. Size of vocabulary: |V/|

2. Number of words in the sequence: D

3. Word vectors: wy, ws, ..., wp € RIVI

4. Dimension of each embedding layer : h

1

5. Word embedding weights: C' € RIVI*M

6. Hidden layer size: ho

7. Embedding to hidden layer weights and biases: W, € RPhMxhz p, ¢ RF2
8. Output layer size: |V|

9. Hidden to output layer weights and biases: W, € R2xIVI b, € RIVI

Each word is encoded as a |V| dimensional vector w, where |V/| is the size of the vocabulary.
Given a set of sequence of D words, the task is to compute the probability of the (D + 1)
word, i.e.

P (wglrﬁ(wgi), wg), . ,wg))>
for a given example i. The first layer of the network (embedding) transforms the indices
of words in the vocabulary into a h; dimensional vector representation using the word
embedding weights C' € RIVI*M | To understand better, let’s look at an example. Consider

the following sentence as a given training example:
We all have it

In this case there are 3 preceding words: "We", "all", "have" so D = 3 and the target
word is "it" for which we need to determine the conditional probability P (it|(We, all, have)).

Suppose that these words are indexed in the vocabulary (V') as follows:
We:91 all:1 have:3 it:181

The vector w; representing "We" in this training example is then |V'| dimensional with the
91*™" element being 1 and the rest are 0’s. The embedding weights C take each D-word

example, and convert them into a D - h; dimensional embedding vector a;. More precisely,

C ngz)
i C’ng)
o) =" (1)

The embeddings C are shared among all the D words. In passing from the input layer

with word indices to the embedding layer to get a;, equation (1) represents a table lookup.

2

Namely, for each given word index, one needs to consider what row in C' its embedding lies
to obtain a;. To make it clearer, consider our example above. Let’s say that we have the

following batch of training examples, stacked in a matrix containing the corresponding word

indices:
91 5
input_batch = | 1 112 ... (2)
3 82

Each column represent a training example: the first column represent the words We
all have given above. Given word embeddings C, the table lookup involves unfolding
input_batch into a vector and subsetting the rows of C' by this vector, giving the words’

location in the vocabulary V. Namely,

input_batch vec =91 135 11282 ..]

a! =Co113,:]=1 O,

o’ =C[[511282),]] = | O[112,],

In Matlab or Octave, this is easily achieved by

embedding_layer_state = reshape(...
word_embedding_weights (reshape (input_batch, 1, []1),:)’,...

numhidl * numwords, []);

where embedding layer_state is vectors agi)’s stacked columnwise into a matrix A; €

RPMXMbaten to obtain

Al — agl) a§2) . agnbatch) (3)

word_embedding weights is (', numwords is D = 3 and numhid1 is the size of the embedding

layer hy, and npaeen is the size of the input training batch.

Feed forward: Embedding to Hidden Layer

Now we have obtained the embedding layer states agi) for each example in the training batch,

we can move to the hidden layer by weights W, and biases by, using
zQZbl—l—WlT-al (4)

where z, € R"2, b € R" and W; € RPM>h2 In Matlab or Octave, this is achieved by

inputs_to_hidden_units = embed_to_hid_weights ’*embedding_layer_state +

repmat (hid_bias, 1, batchsize);

Here, inputs_to_hidden_ units represent the vectors z, stacked into a matrix Z, € R2Xmbatch

ie.,

Z2 = Zél) Z%Q) . Zénbatch) (5)

and batchsize iS Npaten. 1he final step in this layer is to compute the hidden layer state,

obtained by the activation function o, which we choose to be the sigmoid for this example:
as = o(z9) (6)

In Matlab or Octave:

hidden_layer_state = 1 ./ (1 + exp(-inputs_to_hidden_units));

Similary, hidden layer_state is the matrix Ay € R/2X7aten;

Ay = | o o . glmme) (7)

Feed forward: Hidden to Output Layer

4

Now we can move to the output layer using the weights W5 and biases by:
y:b2+W2T'a/2 (8)

where y € RVl b, € RVl and W, € R"*IVI. The elements of the vector y represent in
the unnormalized log-probabilities for each (D + 1)™ word following (w,...,wp) for the
examples in the training batch. This vector is an input to the softmax function which we
will use to compute the conditional probability that the (D + 1)*® word has index k in the

vocabulary:

P (wDJrl = k| (w! ,wg))) = softmax(y) = Z‘ o 9)

In Matlab or Octave:

inputs_to_softmax = hid_to_output_weights’ * hidden_layer_state +

repmat (output_bias, 1, batchsize);

Here, inputs_to_softmax are vectors y stacked columnwise into a matrix Y € RIVIXmwaten,

Y frg y(l) y(2) . y(nbatch) (10)

hid_to_output_weights is W5 and output_bias is by.

i.e.

Computing Probabilities

Now, we can compute word probabilities using y* for each example with the softmax
function in equation (9). For numerical stability, we subtract from the argument of softmax,
the maximum value of each y, which does not affect the final probabilities. In Matlab or

Octave:

inputs_to_softmax = inputs_to_softmax...

- repmat (max(inputs_to_softmax), vocab_size, 1);

output_layer_state = exp(inputs_to_softmax);

output_layer_state = output_layer_state ./ repmat (...

sum (output_layer_state, 1), vocab_size, 1);

where output_layer_state is the conditional probabilities stacked columnwise, i.e.

1 Nbatc
Pl =1) ... Py =1)

1 Mbatc]
Pwhl, =2) ... Py =2)

(11)

PwH), = [V]) ... Pl =|V))

In summary, the whole neural network performs the following operation

y=by+ Wi o (b1 + Wi al) , P = softmax(y) (12)

Loss Function

The loss function that we minimize during training is the maximum log-likelihood, given

the word probabilties. Namely,

NMbatch |V|
L= > log(P") I(w}), = k) (13)
=1 k=1

where P,Ei) = Py; from equation (11) which is the probability of obtaining word k in example
(i) for the (D + 1)™ word. At the moment, we do not include any regularization term for
brevity. We also define I (ngI = k) = I;;. T € RVPman is 1 whenever the index of the

word in the training batch meets with its location in the vocabulary. For example,

(000...0]
100...0
2 000...0
4 010...0
Wp41 = ; I=1 1, I, =1, Lo=1 Las=1,... (14)
181 R
001...0
000...0

In Matlab or Octave, the Loss function is computed as a double sum over the training

examples and words, with I subsetting the correct indices for words:

6

expansion_matrix = eye(vocab_size);

expanded_target_batch = expansion_matrix(:, target_batch);

CE = -sum(sum(...

expanded_target_batch .* log(output_layer_state + tiny))) / batchsize;

Here, the target_batch is the indices of words wpi; (a |V| dimensional vector) in the
training batch, expanded_target_batch is I defined above, tiny is an infinitesimally small
constant added for numerical stability and batchsize is the number of examples in the

training batch. The division by batchsize turns the loss function into the Cross Entropy.

Backpropagation: Probabilities to Output Layer

Now that we have obtained the forward propagation scheme for the network, we need to
compute the gradients with respect to the weights and biases to optimize their values.
First, we compute the gradient of the loss function with respect to the unnormalized log-
probabilities y. Let’s do this for the derivative for a single training example. Using the

definition of softmax in equation (9),

LY =—logP, () =1)
i i (4) _ p® _
oL 1 PP 1 {Pj (1-P"), k=
—POPY, k#j

= P 10l =)

oy B0 0y P

where L is the contribution to loss from a single example, and 0x; is the Kronecker delta.

This derivative above is defined as the error derivative:
E; = PY — 1 (15)

which will multiply all the weights in all the layers. In Matlab or Octave:

error_deriv = output_layer_state - expanded_target_batch;

Backpropagation: Output to Hidden Layer
For this backpropagation step, we first notice that equation (12) implies
Yy = by + Wy - ay’

Then, the derivative of the loss function with respect to W5 is obtained as follows: First, we

compute the derivative of the loss for a single example as

oL UL arw oy
0W2 mn j=1 ay](z) 8W2 mn
14 4 '
= Ejias) 0 = a), B
j=1

Summing over all the examples in the training batch, we obtain the derivative of the full

loss function as

aL a Mpatch ' Mbatch)
aWQ nm aVV2 nm (ZZI) ; fan
Nbatch

i=1

(8%2) = Ay -ET (16)

The derivative with respect to the bias is obtained similarly:

which in matrix notation:

oLw oLt oy oL ”bzh .
8b2n - ‘ P z) aan = Ling, abgn - ni
j=1 9Y;

=1

In Matlab or Octave, the above equations (16) and (17) can be implemented as

hid_to_output_weights_gradient = hidden_layer_state * error_deriv’;

output_bias_gradient = sum(error_deriv, 2);

We also define the following quantity, the back propagated derivative of W5, as follows:
A% = At = (Wa - E) i Agmi (1 — Agni) (18)

which will be used in backpropagating from the hidden layer to embedding layer. Notice

that A; € R2Xmawen In Matlab or Octave, it can be calculated as

8

back_propagated_deriv_1 = (hid_to_output_weights * error_deriv)

.*x hidden_layer_state .* (1 - hidden_layer_state);

Backpropagation: Hidden to Embedding Layer

In this step we compute the derivatives with respect to Wj and b;. For this, we use equation

(12). The derivative with respect to W) can be obtained as follows:

b W gre B g0 i
oL® Z 8L(ZQ: dy i) 32512
8W1nm -) annm

j=1] k=1
Vi

= Z]Eji W2mj A2mi (1 - A2mz) Alni
j=1

where we have used the derivative of the sigmoid function:
o' (25) = @ (1= ag) = Api (1 = Az

and

= a?) Okm = At ni Okm,
Then, the derivative with respect to the total loss function is
Mbatch Nbatch
i (32 10) = 3 A 0922 1)

Nbatch

= Z Alni Almi
=1

where A is defined in equation (18). In matrix form,

oL
< awl) = Ay AT (20)

The derivative of the bias b, is obtained similarly

aL Mbatch Mbatch

obr, D [(We E)i Avi (1~ Azii)] = Z Al (21)

In Matlab or Octave, these two can be implemented as

9

embed_to_hid_weights_gradient = embedding_layer_state

* back_propagated_deriv_1’;

hid_bias_gradient = sum(back_propagated_deriv_1, 2);

where back_propagated_deriv_1 is A;. We also define the following quantity, the back

propagated derivative of Wy, as follows:
AV = Ngs =Wy - Ay (22)

which will be used in backpropagating from the embedding layer to input layer. In Matlab

or Octave, it can be calculated as

back_propagated_deriv_2 = embed_to_hid_weights * back_propagated_deriv_1;

Backpropagation: Embedding to Input Layer

In this step, we compute the derivative of the loss function with respect to embedding

weights C. Following similar steps above, the chain rule gives

Vi

i iy h (@) i
=1 ayﬁ‘z) s=1 aagzs) OCinn

aC(mn

he hy |V 8a

- Z Z Z W%J]EJZAMz (1 - A2k1> Wi sk ac,

klslyl

h1 (i)
Oa
:E:An—ﬁ- 23
s=1 i 8Cmn ()

At this point, we need to compute the derivative of a; with respect to C' to continue. This

requires some care, since C' multiplies D blocks of w’s each with dimension h; inside a;.

10

More precisely,

al - - -) CT . w](z) c Rhl

(24)

This means that in the above equation (23), the back propagated derivative Ay, which is of

dimensions Dhy X Npaten has to multiply ag? block by block D times. Thus, we can recast the

above equation (23) by a sum over these D blocks, while constraining the sum over index s

to be confined to the right block’s indices. Namely,

D

oL 0 ;
3G = 2= 2 Penige oy

d=1 s€Sy mn s

where
SdZ (d—l)hlgsgdhl

which does the constraining of Ay to the right block. Then, we can define

Ad

2ij

= Agjj, provided : (d—1)h; < j < dhy

Moreover,

which gives us

o =3 (41, 5

This equation deserves some more explanation. First of all, notice that the term (w

(25)

(26)

(27)

(28)

Jm 18

1 if for the i example, the word at position d is m of the vocabulary; else it is zero. For

instance, the d* word in the input_batch for all the examples in the batch, looks like

input_batch[d, :] =[24 123 ..]

11

Then,

000...0
100...0
000...0
="t Iy =1, Iyo=1, Iipg3=1 (29)
d/)— | Lo 2,1 =1, Iy2=1, lljp3 3 =1, ...
001...0
(000 ...0]

which is nothing but T defined above. The only difference is that, the locations of 1’s will

be different for each word position d, thus we define:

12, = (Wi (30)

d
me

With this definition, we finally sum equation (28) over all the training examples in the batch,

which gives us

s = > (g, 1)

d=1

In Matlab or Octave, this can be implemented as follows:

for w = l:numwords
word_embedding_weights_gradient = word_embedding_weights_gradient + ...
expansion_matrix(:, input_batch(w, :)) *
(back_propagated_deriv_2(1 + (w - 1) * numhidl : w * numhidl, :)’);

end

where expansion matrix(:, input_batch(w, :)) is ¢ = (w((;))m.
(back propagated deriv 2(1 + (w - 1) * numhidl : w * numhidl, :) is A¢ which
is Ay subsetted using Sy.

12

