
Author: Burak Himmetoglu

Notes on the Neural Probabilistic Language Model

Below is a schematic representation of the neural language model. The network can be

summarized as follows:

FIG. 1. The Neural Language Model

1. Size of vocabulary: |V |

2. Number of words in the sequence: D

3. Word vectors: w1, w2, . . . , wD ∈ R|V |

4. Dimension of each embedding layer : h1

1

5. Word embedding weights: C ∈ R|V |×h1

6. Hidden layer size: h2

7. Embedding to hidden layer weights and biases: W1 ∈ RDh1×h2 , b1 ∈ Rh2

8. Output layer size: |V |

9. Hidden to output layer weights and biases: W2 ∈ Rh2×|V |, b2 ∈ R|V |

Each word is encoded as a |V | dimensional vector w, where |V | is the size of the vocabulary.

Given a set of sequence of D words, the task is to compute the probability of the (D + 1)th

word, i.e.

P
(
w

(i)
D+1|(w

(i)
1 , w

(i)
2 , . . . , w

(i)
D)
)

for a given example i. The first layer of the network (embedding) transforms the indices

of words in the vocabulary into a h1 dimensional vector representation using the word

embedding weights C ∈ R|V |×h1 . To understand better, let’s look at an example. Consider

the following sentence as a given training example:

We all have it

In this case there are 3 preceding words: "We", "all", "have" so D = 3 and the target

word is "it" for which we need to determine the conditional probability P (it|(We, all, have)).

Suppose that these words are indexed in the vocabulary (V) as follows:

We : 91 all : 1 have : 3 it : 181

The vector w1 representing "We" in this training example is then |V | dimensional with the

91th element being 1 and the rest are 0’s. The embedding weights C take each D-word

example, and convert them into a D · h1 dimensional embedding vector a1. More precisely,

a
(i)
1 =


CTw

(i)
1

CTw
(i)
2

...

CTw
(i)
D

 (1)

The embeddings C are shared among all the D words. In passing from the input layer

with word indices to the embedding layer to get a1, equation (1) represents a table lookup.

2

Namely, for each given word index, one needs to consider what row in C its embedding lies

to obtain a1. To make it clearer, consider our example above. Let’s say that we have the

following batch of training examples, stacked in a matrix containing the corresponding word

indices:

input batch =


91 5

1 112 . . .

3 82

 (2)

Each column represent a training example: the first column represent the words We

all have given above. Given word embeddings C, the table lookup involves unfolding

input batch into a vector and subsetting the rows of C by this vector, giving the words’

location in the vocabulary V . Namely,

input batch vec = [91 1 3 5 112 82 . . .]

a
(1)
1 = C [[91 1 3], :] =


C[91, :]

C[1, :]

C[3, :]



a
(2)
1 = C [[5 112 82], :] =


C[5, :]

C[112, :],

C[82, :]


...

In Matlab or Octave, this is easily achieved by

embedding_layer_state = reshape (...

word_embedding_weights(reshape(input_batch , 1, []),:)’,...

numhid1 * numwords , []);

where embedding layer state is vectors a
(i)
1 ’s stacked columnwise into a matrix A1 ∈

RDh1×nbatch to obtain

A1 =

 a(1)1 a
(2)
1 . . . a

(nbatch)
1

 (3)

word embedding weights is C, numwords is D = 3 and numhid1 is the size of the embedding

layer h1, and nbatch is the size of the input training batch.

3

Feed forward: Embedding to Hidden Layer

Now we have obtained the embedding layer states a
(i)
1 for each example in the training batch,

we can move to the hidden layer by weights W1 and biases b1, using

z2 = b1 +W T
1 · a1 (4)

where z2 ∈ Rh2 , b1 ∈ Rh2 and W1 ∈ RDh1×h2 . In Matlab or Octave, this is achieved by

% Compute inputs to hidden units.

inputs_to_hidden_units = embed_to_hid_weights ’* embedding_layer_state + ...

repmat(hid_bias , 1, batchsize);

Here, inputs to hidden units represent the vectors z2 stacked into a matrix Z2 ∈ Rh2×nbatch

i.e.,

Z2 =

 z(1)2 z
(2)
1 . . . z

(nbatch)
2

 (5)

and batchsize is nbatch. The final step in this layer is to compute the hidden layer state,

obtained by the activation function σ, which we choose to be the sigmoid for this example:

a2 = σ(z2) (6)

In Matlab or Octave:

% Apply logistic activation function

hidden_layer_state = 1 ./ (1 + exp(-inputs_to_hidden_units));

Similary, hidden layer state is the matrix A2 ∈ Rh2×nbatch :

A2 =

 a(1)2 a
(2)
1 . . . a

(nbatch)
2

 (7)

Feed forward: Hidden to Output Layer

4

Now we can move to the output layer using the weights W2 and biases b2:

y = b2 +W T
2 · a2 (8)

where y ∈ R|V |, b2 ∈ R|V | and W2 ∈ Rh2×|V |. The elements of the vector y represent in

the unnormalized log-probabilities for each (D + 1)th word following (w1, . . . , wD) for the

examples in the training batch. This vector is an input to the softmax function which we

will use to compute the conditional probability that the (D + 1)th word has index k in the

vocabulary:

P
(
w

(i)
D+1 = k|(w(i)

1 , . . . , w
(i)
D)
)

= softmaxk(y) =
eyk∑|V |
j=1 e

yj
(9)

In Matlab or Octave:

% Compute inputs to softmax.

inputs_to_softmax = hid_to_output_weights ’ * hidden_layer_state + ...

repmat(output_bias , 1, batchsize);

Here, inputs to softmax are vectors y stacked columnwise into a matrix Y ∈ R|V |×nbatch ,

i.e.

Y =

 y(1) y(2) . . . y(nbatch)

 (10)

hid to output weights is W2 and output bias is b2.

Computing Probabilities

Now, we can compute word probabilities using y(i) for each example with the softmax

function in equation (9). For numerical stability, we subtract from the argument of softmax,

the maximum value of each y(i), which does not affect the final probabilities. In Matlab or

Octave:

% Subtract the max

inputs_to_softmax = inputs_to_softmax ...

- repmat(max(inputs_to_softmax), vocab_size , 1);

% Compute exp.

output_layer_state = exp(inputs_to_softmax);

5

% Normalize to get probability distribution.

output_layer_state = output_layer_state ./ repmat (...

sum(output_layer_state , 1), vocab_size , 1);

where output layer state is the conditional probabilities stacked columnwise, i.e.

P =


P (w

(1)
D+1 = 1) . . . P (w

(nbatch)
D+1 = 1)

P (w
(1)
D+1 = 2) . . . P (w

(nbatch)
D+1 = 2)

...
. . .

...

P (w
(1)
D+1 = |V |) . . . P (w

(nbatch)
D+1 = |V |)

 (11)

In summary, the whole neural network performs the following operation

y = b2 +W T
2 · σ

(
b1 +W T

1 · a1
)
, P = softmax(y) (12)

Loss Function

The loss function that we minimize during training is the maximum log-likelihood, given

the word probabilties. Namely,

L =

nbatch∑
i=1

|V |∑
k=1

log(P
(i)
k) I(w

(i)
D+1 = k) (13)

where P
(i)
k = Pki from equation (11) which is the probability of obtaining word k in example

(i) for the (D + 1)th word. At the moment, we do not include any regularization term for

brevity. We also define I(w
(i)
D+1 = k) ≡ Iji. I ∈ R|V |×nbatch is 1 whenever the index of the

word in the training batch meets with its location in the vocabulary. For example,

wD+1 =


2

4

181
...

 , I =



0 0 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0



, I2, 1 = 1, I4, 2 = 1, I181, 3 = 1, . . . (14)

In Matlab or Octave, the Loss function is computed as a double sum over the training

examples and words, with I subsetting the correct indices for words:

6

% Expand the target to a sparse 1-of-K vector.

expansion_matrix = eye(vocab_size);

expanded_target_batch = expansion_matrix (:, target_batch);

% Cross -Entropy

CE = -sum(sum (...

expanded_target_batch .* log(output_layer_state + tiny))) / batchsize;

Here, the target batch is the indices of words wD+1 (a |V | dimensional vector) in the

training batch, expanded target batch is I defined above, tiny is an infinitesimally small

constant added for numerical stability and batchsize is the number of examples in the

training batch. The division by batchsize turns the loss function into the Cross Entropy.

Backpropagation: Probabilities to Output Layer

Now that we have obtained the forward propagation scheme for the network, we need to

compute the gradients with respect to the weights and biases to optimize their values.

First, we compute the gradient of the loss function with respect to the unnormalized log-

probabilities y. Let’s do this for the derivative for a single training example. Using the

definition of softmax in equation (9),

L(i) = − logP
(i)
k , (w

(i)
k = 1)

∂L(i)

∂yj
= − 1

P
(i)
k

∂P
(i)
k

∂yj
= − 1

P
(i)
k

{
P

(i)
j

(
1− P (i)

j

)
, k = j

−P (i)
k P

(i)
j , k 6= j

= P
(i)
j − I(w

(i)
D+1 = j)

where L(i) is the contribution to loss from a single example, and δkj is the Kronecker delta.

This derivative above is defined as the error derivative:

Eji ≡ P
(i)
j − Iji (15)

which will multiply all the weights in all the layers. In Matlab or Octave:

% Compute derivative of cross -entropy loss function.

error_deriv = output_layer_state - expanded_target_batch;

7

Backpropagation: Output to Hidden Layer

For this backpropagation step, we first notice that equation (12) implies

y(i) = b2 +W T
2 · a

(i)
2

Then, the derivative of the loss function with respect to W2 is obtained as follows: First, we

compute the derivative of the loss for a single example as

∂L(i)

∂W2mn

=

|V |∑
j=1

∂L(i)

∂y
(i)
j

∂y
(i)
j

∂W2mn

=

|V |∑
j=1

Eji a
(i)
2n δjm = a

(i)
2m Eni

Summing over all the examples in the training batch, we obtain the derivative of the full

loss function as

∂L

∂W2nm

=
∂

∂W2nm

(
nbatch∑
i=1

L(i)

)
=

nbatch∑
i=1

a
(i)
2n Emi

=

nbatch∑
i=1

A2mi ET
in

which in matrix notation: (
∂L

∂W2

)
= A2 · ET (16)

The derivative with respect to the bias is obtained similarly:

∂L(i)

∂b2n
=

|V |∑
j=1

∂L(i)

∂y
(i)
j

∂y
(i)
j

∂b2n
= Eni,

∂L

∂b2n
=

nbatch∑
i=1

Eni (17)

In Matlab or Octave, the above equations (16) and (17) can be implemented as

% Gradient w.r.t W2

hid_to_output_weights_gradient = hidden_layer_state * error_deriv ’;

% Gradient w.r.t b2

output_bias_gradient = sum(error_deriv , 2);

We also define the following quantity, the back propagated derivative of W2, as follows:

∆
(i)
1m = ∆1mi ≡ (W2 · E)miA2mi (1− A2mi) (18)

which will be used in backpropagating from the hidden layer to embedding layer. Notice

that ∆1 ∈ Rh2×nbatch . In Matlab or Octave, it can be calculated as

8

back_propagated_deriv_1 = (hid_to_output_weights * error_deriv) ...

.* hidden_layer_state .* (1 - hidden_layer_state);

Backpropagation: Hidden to Embedding Layer

In this step we compute the derivatives with respect to W1 and b1. For this, we use equation

(12). The derivative with respect to W1 can be obtained as follows:

∂L(i)

∂W1nm

=

|V |∑
j=1

∂L(i)

∂y
(i)
j

h2∑
k=1

∂y
(i)
j

∂a
(i)
2k

σ′(z
(i)
2k)

∂z
(i)
2k

∂W1nm

=

|V |∑
j=1

EjiW2mj A2mi (1− A2mi)A1ni

where we have used the derivative of the sigmoid function:

σ′(z
(i)
2k) = a

(i)
2m (1− a(i)2m) = A2mi (1− A2mi)

and

∂z
(i)
2k

∂W1nm

= a
(i)
1 δkm = A1ni δkm,

∂y
(i)
j

∂a
(i)
2k

= W2 kj (19)

Then, the derivative with respect to the total loss function is

∂

∂W1nm

(
nbatch∑
i=1

L(i)

)
=

nbatch∑
i=1

A1ni [(W2 · E)miA2mi (1− A2mi)]

=

nbatch∑
i=1

A1ni ∆1mi

where ∆1 is defined in equation (18). In matrix form,(
∂L

∂W1

)
= A1 ·∆T

1 (20)

The derivative of the bias b1 is obtained similarly

∂L

∂b1n
=

nbatch∑
i=1

[(W2 · E)miA2mi (1− A2mi)] =

nbatch∑
i=1

∆1ni (21)

In Matlab or Octave, these two can be implemented as

9

% Gradient w.r.t W1

embed_to_hid_weights_gradient = embedding_layer_state ...

* back_propagated_deriv_1 ’;

% Gradient w.r.t b1

hid_bias_gradient = sum(back_propagated_deriv_1 , 2);

where back propagated deriv 1 is ∆1. We also define the following quantity, the back

propagated derivative of W1, as follows:

∆
(i)
2m = ∆2mi ≡ W1 ·∆1 (22)

which will be used in backpropagating from the embedding layer to input layer. In Matlab

or Octave, it can be calculated as

back_propagated_deriv_2 = embed_to_hid_weights * back_propagated_deriv_1;

Backpropagation: Embedding to Input Layer

In this step, we compute the derivative of the loss function with respect to embedding

weights C. Following similar steps above, the chain rule gives

∂L(i)

∂Cmn

=

|V |∑
j=1

∂L(i)

∂y
(i)
j

h1∑
s=1

∂y
(i)
j

∂a
(i)
1s

∂a
(i)
1s

∂Cmn

=

h2∑
k=1

h1∑
s=1

|V |∑
j=1

W2 kj EjiA2 ki (1− A2 ki)W1 sk
∂a

(i)
1s

∂Cmn

=

h1∑
s=1

(W1 ·∆1)si
∂a

(i)
1s

∂Cmn

=

h1∑
s=1

∆2 si
∂a

(i)
1s

∂Cmn

(23)

At this point, we need to compute the derivative of a1 with respect to C to continue. This

requires some care, since C multiplies D blocks of w’s each with dimension h1 inside a1.

10

More precisely,

a
(i)
1 =



[
CT · w(i)

1

]
[
CT · w(i)

2

]
...[

CT · w(i)
D

]

 , CT · w(i)
j ∈ Rh1 (24)

This means that in the above equation (23), the back propagated derivative ∆2, which is of

dimensions Dh1×nbatch has to multiply a
(i)
1s block by block D times. Thus, we can recast the

above equation (23) by a sum over these D blocks, while constraining the sum over index s

to be confined to the right block’s indices. Namely,

∂L(i)

∂Cmn

=
D∑

d=1

∑
s∈Sd

∆2 si
∂

∂Cmn

[
CT · w(i)

d

]
s

(25)

where

Sd : (d− 1)h1 ≤ s ≤ dh1 (26)

which does the constraining of ∆2 to the right block. Then, we can define

∆d
2 ij ≡ ∆2 ij, provided : (d− 1)h1 ≤ j ≤ dh1 (27)

Moreover,

∂

∂Cmn

[
CT · w(i)

d

]
s

= δsn (w
(i)
d)m

which gives us

∂L(i)

∂Cmn

=
D∑

d=1

(
w

(i)
d

)
m

∆d
2 in (28)

This equation deserves some more explanation. First of all, notice that the term (w
(i)
d)m is

1 if for the ith example, the word at position d is m of the vocabulary; else it is zero. For

instance, the dth word in the input batch for all the examples in the batch, looks like

input batch[d, :] = [2 4 123 . . .]

11

Then,

(w
(i)
d) =



0 0 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0



, I2, 1 = 1, I4, 2 = 1, I123, 3 = 1, . . . (29)

which is nothing but I defined above. The only difference is that, the locations of 1’s will

be different for each word position d, thus we define:

Idmi ≡ (w
(i)
d)m (30)

With this definition, we finally sum equation (28) over all the training examples in the batch,

which gives us

∂L

∂Cmn

=
D∑

d=1

(
Id · (∆d

2)
T
)
mn

(31)

In Matlab or Octave, this can be implemented as follows:

for w = 1: numwords

word_embedding_weights_gradient = word_embedding_weights_gradient + ...

expansion_matrix (:, input_batch(w, :)) * ...

(back_propagated_deriv_2 (1 + (w - 1) * numhid1 : w * numhid1 , :)’);

end

where expansion matrix(:, input batch(w, :)) is Idmi = (w
(i)
d)m.

(back propagated deriv 2(1 + (w - 1) * numhid1 : w * numhid1, :) is ∆d
2 which

is ∆2 subsetted using Sd.

12

